深海油气管道数据清洗方法设计
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Design of Data Cleaning Method for Deep Sea Oil and Gas Pipeline
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出数据缺失值插补算法和数据离群点检测算法。对管道全生命周期中产生的数据进行初步的筛选,然后进行管道全生命周期数据的预处理,检测缺失值和异常值。在数据缺失值插补算法中提出多元线性回归插补法,对检测的缺失值进行合理化插补。对管道数据中的离群点利用基于密度的局部离群点检测算法,将检测出的离群点进行仿真测试,局部离群因子(Local Outlier Factor,LOF)离群点检测算法正检率达96%,比传统的K-means离群点检测算法高41.18%,得到较高的检测精度,并建立最优检测模型。

    Abstract:

    A data missing value interpolation algorithm and a data outlier detection algorithm are proposed. The data generated during the whole life cycle of the pipeline is screened, and then the data are preprocessed to find missing values and abnormal values. A multivariate linear regression interpolation method is proposed in the missing data interpolation algorithm to perform interpolation on missing values. For the outliers in the pipeline data, the local outlier detection algorithm based on density is used to simulate the detected outliers. The positive detection rate of Local Outlier Factor (LOF) outlier detection algorithm is 96%, which is 41.18% higher than that of the traditional K-means outlier detection algorithm, high detection accuracy is obtained, and the optimal detection model is established.

    参考文献
    相似文献
    引证文献
引用本文

赵可天,唐建华,倪剑,魏红秋,董洋.深海油气管道数据清洗方法设计[J].中国海洋平台,2022,(04):49-54

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-08-23
  • 出版日期: