基于机器学习策略的半潜式钻井平台结构设计优化
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Structural Design Optimization Based on Machine Learning Strategy of Submersible Drilling Platform
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    引入数值优化分析方法,基于优化软件Noesis-Optimus搭建适用于工程结构设计优化工作流,开发相应的软件接口和分析代码,形成完整设计分析方法。分析优化采用机器学习策略,对输入参数、约束条件和优化目标进行相关性分析,对结构强度、疲劳寿命和区域结构重量分别进行单目标和多目标方案优化。通过千组样本的分析,得到多组优化方案和帕累托前沿,可供工程设计备选。研究取得从定性手动试算优化到定量自动迭代优化的技术突破,在得到优选方案的同时,掌握相关设计参数对优化目标的影响趋势并累积大量备选方案。

    Abstract:

    Numerical optimization analysis method is introduced. The workflow suitable for engineering structure design optimization is established based on the optimization software Noesis-Optimus. Corresponding software interfaces and analysis file generation codes are developed to form an automatic design analysis method. The machine learning strategy is used and the correlation analyses are performed on input parameters, constraints and optimization goals. The single-objective and multi-objective optimizations are carried out for structural strength, fatigue life and regional structural weight, respectively. Through the analysis of thousands of samples, multiple sets of optimal design solutions and Pareto fronts are obtained, which can be used as design alternatives. The quantitative automatic iterative optimization is applied to replace the qualitative manual trial calculation optimization as technical breakthrough. While the optimal solutions are obtained, the influence of related design parameters on the optimization goal is grasped and a large number of alternatives are found.

    参考文献
    相似文献
    引证文献
引用本文

周佳,孙伟,陈婕,王璞.基于机器学习策略的半潜式钻井平台结构设计优化[J].中国海洋平台,2021,(04):22-28

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-08-20
  • 出版日期: